
Reduze 2

Tutorial

A. von Manteuffel
C. Studerus

June 19, 2012

Contents

1 Introduction 3

2 Installation 4
2.1 Basic installation guide . 4
2.2 External dependencies . 4
2.3 Advanced build options . 5

3 Usage 7
3.1 Getting started . 7
3.2 Configuration files . 7

3.2.1 Kinematics . 8
3.2.2 Integral families . 8
3.2.3 Crossed integral families . 9
3.2.4 Feynman rules . 9
3.2.5 Global configurations . 9

3.3 Job files . 10
3.4 Online help . 11
3.5 YAML format . 11
3.6 MPI build . 12
3.7 Fermat support . 13
3.8 Directories . 13
3.9 Data file formats . 14
3.10 Setup sector mappings . 15
3.11 Treatment of crossings and sector relations in reductions 17
3.12 Resume and combine reduction runs . 17
3.13 QGRAF input . 18
3.14 Choice of master integrals . 18
3.15 Advanced run options . 18
3.16 Examples . 19

Bibliography 20

2

1 Introduction

Reduze is a computer program for reducing Feynman integrals to master integrals em-
ploying a variant of Laporta’s reduction algorithm.

This tutorial describes version 2 of the program. New features include the distributed
reduction of single topologies on multiple processor cores. The parallel reduction of
different topologies is supported via a modular, load balancing job system. Fast graph
and matroid based algorithms allow for the identification of equivalent topologies and
integrals.

The user documentation of Reduze 2 is split in the following way:

concepts: The basic concepts and algorithms Reduze 2 relies on are described in our
paper.

tutorial: This tutorial provides practical help with the installation of the program and
explains the general usage of the program along specific examples.

reference: The actual reference user documentation is provided by the online help of
the program executable (reduze -h).

The source package of Reduze and the latest version of this tutorial can be found at
the web page http://projects.hepforge.org/reduze .

3

http://projects.hepforge.org/reduze

2 Installation

2.1 Basic installation guide

First, here is the quick guide for the impatient. To install a minimal build of Reduze 2
on a personal computer running Linux:

1. install CMake and GiNaC using the package manager of your distribution

2. download the Reduze source package and unpack it (replace 2.0.0 by the actual
version number):

cd /tmp

tar -xzf reduze-2.0.0.tar.gz

3. configure, build, test and install (replace /home/mustermann/myprograms with the
actual path you use for your program installations):

cd /tmp/reduze-2.0.0

cmake -DCMAKE_INSTALL_PREFIX=/home/mustermann/myprograms

make -j 2

make check # optional

make install

The rest of this chapter gives more details on these steps, describes how to install
Reduze with its full feature set and addresses user defined locations of external libraries.

2.2 External dependencies

Reduze was developed on Linux with the GNU C++ compiler. We expect Reduze to work
with minor modifications also on other Un*x flavors and reasonably up-to-date compilers.
More specifically, we rely on ISO C++ 1998 including its template functionality and on
POSIX functions, in particular for file and directory handling. Reduze depends on several
external programs and libraries, which are described in the following.

In order to build and run Reduze, at least these two packages must be available:

CMake: This tool is used to build the program. Versions 2.6 and 2.8 are known to
work. This package can be easily installed with a package manager on many Linux
distributions.

4

2 Installation

GiNaC: The GiNaC library [1] is used by for algebraic manipulations. Versions 1.5.5 and
1.6.2 are known to work. This library and its header files can be easily installed
with a package manager on many Linux distributions. Newer version might require
the user to compile and install its own version.

The following packages are optional:

MPI: In order to profit from distributed computations, Reduze 2 must be run as an
MPI program. We rely on the MPI-1 standard, a compatible implementation is
available via the package manager of many Linux distributions. OpenMPI 1.4.1 and
1.4.3 are known to work. The build option USE_MPI controls whether to build an
MPI program or a normal serial program.

Berkeley DB: The system of equations to be reduced can be stored in a Berkeley DB.
This feature is useful to handle systems of equations which do not fit into main
memory and to recover the full information of an aborted run using transactions.
Note that the database can only used during the run, the final reduction results
are always written to plain ASCII files. Versions 4.8.26 and 5.1.25 are known to
work. Please note that in addition to the library itself the STL interface db-stl

(see e.g. header file dbstl_common.h) is needed, which is not provided by all Linux
distributions. If you compile the database yourself, please use the Berkeley DB

configure switch --enable-stl. The Reduze build option USE_DATABASE controls
whether to link against Berkeley DB.

Fermat: It is possible to use the program Fermat [2] (instead of GiNaC) for GCD cal-
culations. Version 4.09 was tested in its 64-bit version. Fermat is available as an
executable program only and not as library. The build option USE_FERMAT con-
trols whether a small wrapper code should be included in Reduze to allow for the
runtime option to use Fermat. It should be safe to leave this option on its default
value ON.

Please note the CMake build flags USE_* described above only determine the capabilities
of the Reduze executable. Additional options given at runtime control whether and how
a specific feature should actually be employed for a specific computation. These runtime
options will be listed in the online help only as far as the specific build supports them.

2.3 Advanced build options

We assume you already installed all libraries you want to use in Reduze and downloaded
the source code of Reduze. First unpack the sources:

cd /tmp

tar -xzf reduze-2.0.0.tar.gz

An out-of-source build with MPI support may be configured with

5

2 Installation

mkdir /tmp/reduze-build

cd /tmp/reduze-build

cmake -DCMAKE_INSTALL_PREFIX=/home/mustermann/myprograms \

-DUSE_MPI=ON /tmp/reduze-2.0.0

Build options specific to Reduze can be configured by adding the following CMake options:

-DUSE_MPI=ON

-DUSE_DATABASE=ON

-DUSE_FERMAT=ON

You can tell CMake to look for external libraries and headers not only automagically in
the “usual directories” but also below the directory /usr/local/extras using the flags

-DCMAKE_INCLUDE_PATH=/usr/local/extras/include

-DCMAKE_LIBRARY_PATH=/usr/local/extras/lib

In case your system provides several compilers, you can select the right one with

-DCMAKE_CXX_COMPILER=/home/mustermann/myprograms/bin/g++

In particular if you are using OS-X it might be necessary to install a somewhat re-
cent compiler manually. More ways to control CMake can be found in the CMake doc-
umentation, see in particular http://cmake.org/cmake/help/cmake-2-8-docs.html#
section_Variables. It might avoid confusion to

rm -rf /tmp/reduze-build/*

in between different attempts to e.g. tell CMake to use the right one out of different
versions of the same libraries or when changing the values of the USE_* flags. As the
next-to-final resort you might want to have a look at the CMakeLists.txt files in the
directories of the Reduze source directories.

After successful configuration you may want to compile the project with e.g. up to 2
compilations in parallel using

make -j 2

The program may be tested using

make check

or, for distributed MPI execution, using

make check_mpi

These tests might take a few minutes to be performed.
Finally, you can install the program executable and some additional files like applica-

tion examples:

make install

Please feel free to contact us if you encounter problems building Reduze.

6

http://cmake.org/cmake/help/cmake-2-8-docs.html#section_Variables
http://cmake.org/cmake/help/cmake-2-8-docs.html#section_Variables

3 Usage

3.1 Getting started

To work with Reduze the user must provide configuration files and a job file. Reduze

comes with a set of application examples which are copied to ’share/reduze/examples’

upon installation of Reduze. Probably the easiest way to get started is to copy one of
the example directories

cd ~

cp -r myprograms/share/reduze/examples/example_1 reduze_try_1

and run

cd reduze_try_1

reduze jobs_reduction.yaml

Here we assumed a non-MPI build of Reduze was installed to /myprograms. In case of
a MPI run you would replace the last command by something like

mpirun -np 5 reduze jobs_reduction.yaml

Details will be given in the following.

3.2 Configuration files

Configuration files define common input data such as the kinematics and integral families
to use. Reduze treats the current working directory as the project directory. Configu-
ration files must be located in a subdirectory ‘config’ of the project directory. The
following configuration files are mandatory:

config/kinematics.yaml

config/integralfamilies.yaml

while these configuration files are optional:

config/feynmanrules.yaml

config/global.yaml

All configuration files use the YAML format.

7

3 Usage

3.2.1 Kinematics

The file kinematics.yaml defines the kinematics and should contain a YAML document
with a map. The map should contain only one entry, with key kinematics (to be taken
as literal string) and a value of type kinematics (documented via the on-line help with
reduze -h kinematics). Usually, this file should not be altered after Reduze used it
for the first time to ensure consistency with existing results. The variable names of the
symbols must start with an alphabetic letter. If Fermat is used they even must start
with a lower case letter. An example for a 2→ 2 process is:

kinematics:

incoming_momenta: [p1, p2]

outgoing_momenta: [p3, p4]

momentum_conservation: [p4, p1 + p2 - p3]

kinematic_invariants:

- [mt, 1]

- [s, 2]

- [t, 2]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p3,p3], mt^2]

- [[p1+p2, p1+p2], s]

- [[p1-p3, p1-p3], t]

- [[p2-p3, p2-p3], -s-t+2*mt^2] # == u

symbol_to_replace_by_one: mt

3.2.2 Integral families

The file integralfamilies.yaml defines the integral families and should contain a
YAML document with a map. The map should contain only one entry, where the key is
integralfamilies (to be taken as literal string) and the value is a sequence of elements
of type integralfamily (documented via the on-line help with reduze -h integralfamily).
An ordering for the integral families and the corresponding integrals is inferred from the
order in which the integral families are specified in the sequence (increasing from begin
to end). For best performance, integral families with a lot of permutation symmetries
should come first in the sequence (see section ??). Usually, existing definitions in this file
should not be altered after Reduze used them it for the first time to ensure consistency
with existing results. However, it is possible to add new integral families at the end of
the sequence without risking inconsistencies for existing reduction results. An example
for a two-loop double box is:

integralfamilies:

- name: planarbox

loop_momenta: [k1, k2]

propagators:

- ["k1", 0]

- ["k2", 0]

- ["k1-k2", 0]

- ["k1-p1", 0]

- ["k2-p1", 0]

- ["k1-p1-p2", 0]

- ["k2-p1-p2", 0]

8

3 Usage

- ["k1-p3", "mt^2"]

- ["k2-p3", "mt^2"]

permutation_symmetries:

- [[1, 6], [2, 7]]

- [[1, 2], [4, 5], [6, 7], [8, 9]]

3.2.3 Crossed integral families

From a user-defined integral family several additional families are generated automati-
cally by permutations of the external momenta. The allowed crossings are permutations
which do not mix external momenta with different masses. Permutations between in-
coming and outgoing momenta involve a sign but are still allowed if they have the same
mass. A crossing leads to a transformation of the kinematic invariants. If different cross-
ings have the same change in the kinematic invariants they belong to the same class of
equivalent crossings. Special crossings are the identity crossing and the crossings equiv-
alent to the identity crossing. The former does not permute any external momenta
or kinematic invariants and the latter does permute external momenta but leaves the
kinematic invariants untouched.

The external momenta (joint list of incoming and outgoing momenta) of the under-
lying kinematics of an integral family are numbered in the given order (starting from
1). They are assumed to belong to external legs with the same leg numbers. The name
of an integral family with crossed kinematics with respect to a user–defined “source
integral family” FAM is given by the cycle notation of the permutation; e.g. the permu-
tation (1, 2)(3, 4, 5) of the external legs leads to the family FAMx1p2x3p4p5, or simply
FAMx12x345 if there are no ambiguities.

Crossed integral families are used for target sectors in the sector mappings file (see
section 3.10) to allow to identify sectors which only differ by a crossing.
Reduze never performs a reduction for crossed sectors but instead creates such reduc-

tion results from the corresponding uncrossed sector, if needed.

3.2.4 Feynman rules

The file feynmanrules.yaml defines Feynman rules and should contain a YAML docu-
ment with a one-element map, where the key is feynmanrules and the value is of type
feynmanrules. For more information see the on-line help with reduze -h feynmanrules

and the Feynman rules file included in the source code package.

3.2.5 Global configurations

The file global.yaml collects other global configuration data. It should contain a YAML

document with a map. At the moment, the only supported key is paths with a value of
type paths (see the on-line help with reduze -h paths). It defines paths to external
programs, e.g. to activate Fermat support.

9

3 Usage

3.3 Job files

Reduze executes jobs given in a job file. The job file name is given as argument when
invoking Reduze. The file should contain a YAML document with a map. One element is
mandatory for the map: it has the key jobs and its value is a sequence. Each element
of this sequence should be a one-element map where the key is the name of a specific
job and the value is of the corresponding job type. An example for a job file to perform
reductions, select results and export them is:

jobs:

- setup_sector_mappings: {}

- reduce_sectors:

sector_selection:

select_recursively: [[planarbox, 182]]

identities:

ibp:

- { r: [t, 5], s: [0, 1] }

- select_reductions:

input_file: "myintegrals"

output_file: "myintegrals.sol"

- export:

input_file: "myintegrals.sol"

output_file: "myintegrals.sol.inc"

output_format: "form"

The job file can also contain advanced run options not be described in this section.
A reference list of available job types is obtained via the on-line help with reduze -h jobs.

The help output will look similar to:

List of available job types:

apply_crossings: Generates reduction results for crossed sectors.

cat_files: Concatenates files.

collect_integrals: Collects all integrals appearing in the input file.

compute_diagram_interferences: Computes interferences of diagrams.

compute_differential_equations: Computes derivatives of integrals wrt invariants.

export: Exports to FORM, Mathematica or Maple format.

extract_database_contents: Extracts intermediate results from aborted reduction.

find_diagram_shifts: Matches diagrams to sectors via graphs.

find_diagram_shifts_alt: Matches diagrams to sectors via combinatorics.

generate_identities: Generates identities like IBPs for given seeds.

generate_seeds: Generates integrals from a sector.

insert_reductions: Inserts reductions in expressions.

normalize: Simplifies linear combinations and equations.

print_reduction_info_file: Analyzes reductions in a file.

print_reduction_info_sectors: Analyzes reductions available for sectors.

print_sector_info: Prints diagrams and other information for sectors.

reduce_files: Reduces identities in given files.

reduce_sectors: Reduces integrals from a selection of sectors.

run_reduction: Low-level job to run a reduction.

select_reductions: Selects reductions for integrals.

setup_sector_mappings: Finds shifts between sectors via graphs.

setup_sector_mappings_alt: Finds shifts between sectors via combinatorics.

sum_terms: Sums terms.

test: Performs some tests.

verify_same_terms: Verifies two files contain the same terms.

10

3 Usage

Help for, say, the job reduce_sectors is obtained with reduze -h reduce_sectors.
Usually the first job to be executed should be the job setup_sector_mappings. This

job determines various properties of the integral families, which are used to speed up
reductions and eliminate ambiguities in the result. It is possible to list several jobs in
one file or to distribute them among different job files which are executed in different
runs for the same project directory.

3.4 Online help

Reduze comes with a built-in reference documentation for data types used in configura-
tion files or job files. Invoking

reduze -h

shows how to access the on-line documentation. In particular, for a given keyword help
is provided by

reduze -h KEYWORD

In case of an MPI it might be necessary to replace reduze with mpirun -np 1 reduze.
The help message will also print a template with default values which might be copy-

and-pasted into the user’s configuration or job file. Please note that additional modifi-
cations such as spaces in front of the lines might be necessary to use these templates at
a specific position of the user’s YAML file.

3.5 YAML format

Configuration and job files in Reduze 2 use the YAML 1.2 format [7].
For a quick idea about the YAML language, let us give the following examples. A

sequence of integers is given in standard notation as

- 2

- 5

- 10

or, alternatively, in flow notation as

[2, 5, 10]

A map of keys to strings is described by

name: "Max Mustermann"

city: "Irgendwostadt" # this is a comment

where name is a key and Max Mustermann its value etc. The alternative flow notation
reads

11

http://yaml.org

3 Usage

{ name: "Max Mustermann", city: "Irgendwostadt" }

YAML allows these structures to be nested, where different levels in the hierarchy are
marked by indentation with leading spaces. An example for a map of keys to sequences
is

bosons:

- "gluon"

- "photon"

fermions:

- "electron"

- "top quark"

We strongly recommend not to use any tabulator characters in the configuration or job
files.

3.6 MPI build

In order to execute an MPI build of Reduze, you should start the executable via the
mpirun (or mpiexec) script of your MPI implementation. A typical call to execute the
jobfile jobs_reduction.yaml with 5 MPI processes would be

mpirun -np 5 reduze jobs_reduction.yaml

Please note that Reduze uses dedicated manager processes for the organization of the
calculation:

• per run: one process is needed for the central job center

• per reduction of a sector: one process is needed for the job’s manager, at least one
process is needed for a worker

In a typical application, we therefore recommend to just start more MPI processes than
the number of processor cores to be used (“overloading”). The central job center process
will idle almost all of the time, it should be safe not to reserve a core for it. For small
numbers of worker processes we also do not recommend to reserve a core for the manager.
As an example, to reduce a selection of sectors on a computer with a double-core CPU,
using 5 MPI processes via

mpirun -np 5 reduze jobs_reduction.yaml

would allow all load balancing mechanisms to be exploited: reduction of two sectors
in parallel or reduction of a single sector on two cores. It might help to explicitly
tell your MPI environment not to waste CPU while waiting for messages. Such set-
tings are implementation specific, for OpenMPI you could add the command line option
--mca mpi_yield_when_idle 1.

The project directory should ideally be located on a fast disk, since potentially large
amounts of data will be read from or written to it. In its current version, all Reduze
processes need access to the project directory. While this should not be an issue on a
single machine, for a cluster this requires using a distributed file system.

12

3 Usage

3.7 Fermat support

In a typical reduction a considerable amount of the computation time is spent for nor-
malizing the coefficients of loop integrals within the identities using polynomial GCD
computations. Per default, GiNaC is used for these computations. Optionally the algebra
program Fermat [2] may be used as a drop-in replacement to speed-up the calculations.

The default build options of Reduze allow to directly use an external Fermat executable
by specifying its path in the file config/global.yaml similar to:

paths:

fermat: /home/mustermann/myprograms/apps/fermat/ferls

The Fermat executable should lie in the same directory as the directory BACKWARDS of
the Fermat package. Please check the web-page of Fermat for an executable working for
your specific system and remember that this program is not free software. Currently,
Fermat support is limited to handling reduction equations and does not cover advanced
linear combinations containing functions.

The Fermat binary is offered in two version: a dynamically linked version and a
statically linked version. In our tests, the statically linked Fermat executable worked
more reliably than the dynamically linked version.

In some cases Fermat terminates with an error message containing the string “number
in trial poly divide”. This is a failure of a certain Fermat routine, which can be turned
off with the command &(t=0); in the start up file in the BACKWARDS directory of Fermat.

Note: when using Fermat, variable names (e.g. for the dimension and for kinematic
invariants) are required to begin with a lower case letter.

3.8 Directories

The following sub directories of the project directory are known to Reduze:

config contains the user input files.

graphs contains DOT files for graphs of sectors. With the Graphviz tools (e.g. dot or
neato) it is possible to generate images in PostScript and other formats from
them.

log contains log files.

reductions contains equations in a Reduze specific ASCII format. Each file contains re-
ductions for a specific sector, the files are named according to reduction_FAM_T_ID

for a sector of integral family FAM with T denominators and identification number
ID.

sectormappings contains files with sector mappings for the different integral families
in YAML format. These files store zero sectors and shift relations between different
sectors. Usually they are generated by the job setup_sector_mappings, but an
advanced user might also supply rules obtained from external sources.

13

http://www.graphviz.org

3 Usage

tmp contains temporary files.

Typically, the user will only have to create the config directory with the input files, all
other directories are output directories and will be created by Reduze.

3.9 Data file formats

Reduze uses a native ASCII based format for data files with

• equations

• linear combinations

• lists of integrals

In order to use results with another software, the job export may be used to convert
data files into an appropriate output format. The following export formats are available:

• FORM format

• Mathematica format

• Maple format

The native Reduze formats should be self explaining for the most part. They are intended
to be easily analyzable with the usual GNU command line tools such as grep, sed, awk and
wc. Equations and linear combinations are separated by a line containing a semicolon.
For lists of integrals each line describes an integral. An equation is written in form of
a sum of terms which is implied to be zero (that is, all terms are on the same side of
the equality sign). Usually an equation is normalized such that the coefficient of the
leading integral is 1. A linear combination is a sum of terms which has a name but is
not necessarily zero. A text line which describes an integral is (up to space characters)
of the form

FAM T ID R S E1 E2 ... En

where FAM denotes the integral family, T the number of different denominators, ID the
identification number of its sector, R the number of denominator exponents in the inte-
grand, S the number of numerator exponents in the integrand, E1 the exponent of the
first propagator in the integrand etc. Note that a positive E1 means a factor in the
denominator of the integrand, please see our article for more details.

Various jobs require a file with a list of integrals as input. They can be given in
the native Reduze format described above, or a more brief version where integrals are
specified as

FAM E1 E2 ... En

Additional space characters don’t matter. Alternatively, the format used for the export
of integral lists to Mathematica may be used in input files.

14

3 Usage

3.10 Setup sector mappings

The sector mapping files of the integral families contain information about the sectors
and their relations. These files can be setup by using one of the jobs setup sector mappings

or setup sector mappings alt. They also can be edited by hand. The following entries
occur in the sector mapping files:

• name: name of the integral family

• zero sectors: specifies zero sectors

• sectors without graph: specifies unphysical sectors

• sector relations: shifts of the loop momenta with |det| = 1 that map sectors
to lower (target) sectors

• sector symmetries: shifts of the loop momenta with |det| = 1 that map a sector
to itself

The job setup sector mappings sets up the files by first constructing graphs for sec-
tors and then using graph and matroid based algorithms to derive shift and symmetry
relations. Zero sectors are found during graph construction, e.g. when a sector does not
have enough independent propagator momenta, or when the the corner integral of the
sector is reduced to zero by a small explicit reduction.

An important fact is that a sector can have different graphs which all have the same
(squared) momenta assigned. The graphs can be sorted lexicographically w.r.t. to their
canonical label (a unique representation, chosen to be an adjacency list). The graph
that is constructed for a sector is chosen to be the minimal one w.r.t. to its canonical
label. The default canonical label is computed by allowing permutations of external
nodes. Graphs with external edges can be isomorphic up to a crossing which leave the
canonical label invariant, e.g. if two external edges are both attached to the same vertex.
To choose a unique graph with external edges a second canonical label is computed by
fixing the external nodes for all graphs which are minimal w.r.t. the canonical label with
permutation of all nodes.

To find the minimal graph of a sector two methods are provided. With the default
options,

minimize_graphs_by_twists: true

construct_minimal_graphs: false

one graph per sector is constructed and then further processed by a matroid based
algorithm that performs all relevant twists, see our paper. The minimal graph is then
chosen to represent the sector. The second method, activated with

construct_minimal_graphs: true

generates all possible graphs by construction and the minimal one is chosen. Since no
twists have to be performed anymore they can be turned off with:

15

3 Usage

minimize_graphs_by_twists: false

This second algorithm can take longer than using the twists. It can be used to check
the twist algorithm.

Once a unique graph per sector has been found they can be tested for isomorphisms
such that shifts of the loop momenta can be derived. Shifts between isomorphic sectors
which have an absolute value of the determinat not equal to one are rejected. Therefore,
the set of target sectors, sectors to which other sectors are mapped to, can still contain
sectors which are isomorphic as graphs. The target sectors also may contain some zero
sectors.

When deriving shifts between sectors with external legs the two isomorphic graphs
can still differ by a relative crossing of the external legs. Then, the derived shift of the
loop momenta maps the sector to the crossed target sector, see section 3.2.3. Reduze

does not perform reductions for integrals of crossed sectors but instead derives those
reduction results from the reduction of the uncrossed sectors by tranforming the kine-
matic invariants of the coefficients of the integrals accordingly. Reduction results for
crossed sectors will be written to disk only if the involved crossing is not equivalent
to the identity crossing. Integrals of crossed sectors, where the crossing is equivalent
to the identity, are immediatly replaced by the correponding uncrossed integrals since
the kinematic invariants are not changed. The relative crossing between two isomorphic
graphs does not have to be unique. E.g. if some external legs are attached to the same
vertex the derived relative crossing still can be altered by a permutation of those two
external legs. Such different crossings can be found by inspecting the node symmetry
group of one of the graphs and choosing the minimal crossing. This can be useful if the
minimal crossing is equivalent to the identity crossing. With the default option

minimize_target_crossings: true

a minimal crossing for the shift target sector will be found.
The sector symmetries, shifts in the loop momenta which map a sector to itself, are

derived by comparing the node permutation of the symmetry group (automorphism
group of a graph) and permuting multi-edges. The symmetry group is calculated by
allowing permutations of external legs and rejecting all node permutations which lead to
a crossing not equivalent to the identity. Therefore, the symmetry shifts can also contain
permutations of external momenta but they do not alter the kinematic invariants. This
method does not guarantee that all sector symmetries are found.

The job setup sector mappings alt does not construct graphs but tries to find shifts
between sectors with a combinatorial shift–finder algorithm. This method usually takes
much longer but ensures that all shifts with determinant equal to one have been found.
It is useful for tests and works also for sectors without graph representation.

16

3 Usage

3.11 Treatment of crossings and sector relations in reductions

Crossings and sector relations can be exploited by Reduze to restrict the explicit re-
duction of (IBP) identities to a minimal number of sectors. Reductions for further,
“redundant” sectors will be derived from these explicit reduction results. Moreover, if
the integral families are defined accordingly, the performance for the remaining explicit
system solving can benefit from high permutation symmetries (few integrals) and natural
variables (no crossed kinematics).

The following table describes how Reduze obtains reductions, e.g. when performing
the job reduce_sectors.

zero sector crossing of family sector ID treated by on disk

yes any any direct elimination no
no non-minimal any map to minimal crossed no
no minimal minimal apply crossing to uncrossed yes
no minimal non-minimal apply permutation or shift no
no no minimal explicit reduction yes
no no non-minimal apply permutation or shift no

It should not be important to know these details, if one extracts reductions via the job
select_reductions.

3.12 Resume and combine reduction runs

Reduze has capabilities to resume aborted runs. In order to use these features, one
should set the flag

conditional: true

for the jobs in the job files. With this setting it should be possible to continue an aborted
run by just restarting Reduze with the same job file. In case of an MPI build the process
numbers may differ between the runs. While per default existing result files will just be
overwritten, the conditional option tells Reduze not to regenerate an already existing
result file. This mechanism is based on the existence of files alone and ignores any details
on how the file was generated. To avoid trouble due to incompletely written files, data
files are always written to a file with .tmp suffix first and then renamed.

It is even possible to resume a reduction for a single sector from an aborted run. For
this to work, Reduze must be build with database support and the reduction job has to
be setup to use the database with transactions enabled. Note that it might take quite
some time to recover a large database from an aborted run.

It can be useful to incrementally compute reductions. For instance, one can first
compute reductions for integrals with up to s = 3 numerator powers, and in a second
run extend the solutions to cover also integrals with s = 4. The easiest way to achieve
this is to rename the reductions directory from the s ≤ 3 run to some other name and

17

3 Usage

supply this name via the alternative_input_directory option to reduce_sectors for
the new run with s = 4 identities. The option alternative_input_directory may also
be used to feed additional identities from other sources to the reduction of a selection of
sectors.

3.13 QGRAF input

Reduze can be used to shift loop momenta such that Feynman diagrams generated by
QGRAF [6] match sectors of the user defined integral families. Reduze requires the list of
Feynman diagrams to be given in YAML format. In order to generate this input file with
QGRAF, an appropriate QGRAF style file reduze.sty is supplied. It is known to work with
QGRAF 3.1.1. For specific applications in QCD or QED, interferences of loop with tree
diagrams can be computed with Reduze up to insertion of masters. Please see example
2 for further reference.

Various algorithms in Reduze assume external legs to be on the mass shell (and mo-
menta to be generic). To handle off-shell legs, it may be best to define dedicated particle
types in QGRAF.

3.14 Choice of master integrals

Reduze has built-in rules for the integral ordering. For sectors with more than one master
integrals these rules will automatically select a particular basis for the master integrals
which are the “lowest” unreducible integrals of the sector. This choice is obviously
not unique and one typically wishes to select specific integrals as masters. This might
be because one knows solutions for some integrals or the solutions are easier to obtain
because e.g. the differential equations decouple in some way. Reduze offers features which
effectively allow to perform a basis change. The idea is that the main reduction work is
performed using the predefined ordering. At a later stage the existing reductions may
be translated to the new conventions by specifying a file with preferred_integrals

(typically the master integrals chosen by the user), which will be considered “lower”
than any integral not in this list. This is demonstrated in example 3.

3.15 Advanced run options

The file job file may contain these further options for its top level YAML map in addition
to the mandatory jobs entry:

timeout: 3600 # in seconds, terminates program after approx. 1 hour

max_parallel_jobs: 2 # does not run more than 2 jobs in parallel

time_interval_analysis: 120 # in seconds, rebalances workers each 2 minutes

max_workers_release: 5 # reassigns at most 5 workers each 2 minutes

18

3 Usage

3.16 Examples

We provide the following examples to demonstrate how different tasks can be solved
with Reduze:

1 reductions: This example demonstrates how to perform a reduction and export re-
sults for a user specified list of integrals. Reduze is not designed to directly gen-
erate reductions for a list of integrals alone. Instead, it reduces ranges of integrals
and the user can pick the reduction he actually needs later on. Note that the
job select_reductions will provide reductions also for many integrals for which
no explicit solution is written to the reductions directory, such as for integrals
from zero sectors or integrals whose reductions are easy to generate from other
reductions.

2 diagrams: This example demonstrates how to compute interference terms from Feyn-
man diagrams generated by QGRAF.

3 masters: This example demonstrates how to compute differential equations for master
integrals. The jobs used in the example are somewhat more involved than necessary
to serve as a template also for more complicated sectors. For a sector with several
master integrals the job file allows to select the integrals in the file masters.curr.m
as masters such that also the necessary basis change will be performed.

To run an example, please copy the corresponding directory and execute make in the
directory. The examples are also the basis for the automated check targets used by
Reduze.

19

Bibliography

[1] C. W. Bauer, A. Frink and R. Kreckel, “Introduction to the GiNaC Frame-
work for Symbolic Computation within the C++ Programming Language,”
arXiv:cs/0004015, http://www.ginac.de .

[2] R. H. Lewis, “Computer Algebra System Fermat,” http://www.bway.net/lewis/

.

[3] J.A.M. Vermaseren, Symbolic Manipulation with FORM, Version 2, CAN, Amster-
dam, 1991; “New features of FORM” [math-ph/0010025].

[4] Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).

[5] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCar-
ron and P. DeMarco, ”Maple 10 Programming Guide,“ Maplesoft, Waterloo ON,
Canada, (2005).

[6] P. Nogueira, ”Automatic Feynman graph generation,“ J. Comput. Phys. 105 (1993)
279-289.

[7] YAML: YAML Ain’t Markup Language, http://yaml.org .

[8] J. Beder, yaml-cpp, ”A YAML parser and emitter for C++,“ http://code.

google.com/p/yaml-cpp .

20

http://www.ginac.de
http://www.bway.net/∼lewis/
http://yaml.org
http://code.google.com/p/yaml-cpp
http://code.google.com/p/yaml-cpp

	Introduction
	Installation
	Basic installation guide
	External dependencies
	Advanced build options

	Usage
	Getting started
	Configuration files
	Kinematics
	Integral families
	Crossed integral families
	Feynman rules
	Global configurations

	Job files
	Online help
	YAML format
	MPI build
	Fermat support
	Directories
	Data file formats
	Setup sector mappings
	Treatment of crossings and sector relations in reductions
	Resume and combine reduction runs
	QGRAF input
	Choice of master integrals
	Advanced run options
	Examples

	Bibliography

